目的 探究2种高压输气管道典型密封材料丁腈橡胶和聚四氟乙烯在氦气环境中的渗透行为,量化2种材料的气体阻隔性能。方法 利用压差法和色谱法对纯氦和粗氦气体环境中丁腈橡胶和聚四氟乙烯在不同温度和不同压力条件下的渗透行为进行探究。结果 NBR和PTFE材料的纯氦渗透率与温度的增加呈正相关,PTFE材料的纯氦渗透率要比NBR高出1~2个数量级。在同等压力条件下,PTFE材料的纯氦渗透率比NBR高出1个数量级。在含有氢的粗氦气体环境中,随着氢气浓度的升高,NBR和PTFE材料的氢气渗透率都急剧增加,而氦气渗透率降低。在75 ℃下含3%的粗氦环境中,NBR材料的氢渗透率比PTFE材料高5.9倍,PTFE材料的氦气渗透率比NBR高4.9倍。结论 温度和压力增加整体上会加剧气体渗透,NBR材料在纯氦和粗氦环境中比PTFE具有更优异的抗氦气渗透性能,NBR材料对氦气的阻隔性能优于氢气,在粗氦环境中,PTFE材料比NBR材料具有更好的氢阻隔能力。
Abstract
The work aims to explore the permeation behavior of two typical sealing materials for high-pressure gas transmission pipelines, i.e., nitrile rubber (NBR) and polytetrafluoroethylene (PTFE), in a helium environment, and to quantify the gas barrier performance of NBR and PTFE. The methods of differential pressure and chromatography were employed to investigate the permeation behavior of NBR and PTFE, in pure and crude helium gas environments under different temperature and pressure. The results indicated that the permeability of pure helium in NBR and PTFE materials increased with temperature. PTFE exhibited a permeability that was 1-2 orders of magnitude higher than that of NBR. Under the same pressure condition, the pure helium permeability of PTFE was one order of magnitude higher than that of NBR. In a crude helium environment containing hydrogen, the hydrogen permeability of both NBR and PTFE materials increased sharply while the helium permeability decreased as the hydrogen concentration increased. In an environment containing 3% crude helium at 75 ℃, the hydrogen permeability of NBR was 5.9 times higher than that of PTFE, but the helium permeability of PTFE was 4.9 times higher than that of NBR. Therefore, an increase in temperature and pressure generally leads to an increase of gas permeation in NRB and PTFE. NBR exhibits superior helium permeation resistance in pure and crude helium environments compared with PTFE. The barrier property of NBRagainst helium is better than that against hydrogen. In a crude helium environment, PTFE has better hydrogen barrier capacity than NBR.
关键词
输氦管道 /
高压 /
密封材料 /
橡胶 /
聚四氟乙烯 /
氦渗透率
Key words
helium pipeline /
highpressure /
sealing materials /
rubber /
polytetrafluoroethylene /
helium permeability
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李剑, 王晓波, 徐朱松, 等. 中国氦气资源成藏规律与开发前景[J]. 天然气地球科学, 2024, 35(5): 851-868.
LI J, WANG X B, XU Z S, et al.Helium Resources Accumulation Regulations and Their Development Prospects in China[J]. Natural Gas Geoscience, 2024, 35(5): 851-868.
[2] ANDERSON S T. Economics, Helium,the U.S. Federal Helium Reserve: Summary and Outlook[J]. Natural Resources Research, 2018, 27(4): 455-477.
[3] BERGANZA C J, ZHANG J H.The Role of Helium Gas in Medicine[J]. Medical Gas Research, 2013, 3(1): 18.
[4] 唐金荣, 张宇轩, 周俊林, 等. 全球氦气产业链分析与中国应对策略[J]. 地质通报, 2023, 42(1): 1-13.
TANG J R, ZHANG Y X, ZHOU J L, et al.Analysis of Global Helium Industry Chain and China’s Strategy[J]. Geological Bulletin of China, 2023, 42(1): 1-13.
[5] 李玉宏, 李济远, 周俊林, 等. 氦气资源评价相关问题认识与进展[J]. 地球科学与环境学报, 2022, 44(3): 363-373.
LI Y H, LI J Y, ZHOU J L, et al.Research Progress and New Views on Evaluation of Helium Resources[J]. Journal of Earth Sciences and Environment, 2022, 44(3): 363-373.
[6] 周起忠, 闫卫东, 胡容波, 等. 全球氦气供需形势分析与展望[J]. 中国矿业, 2025, 34(2): 493-502.
ZHOU Q Z, YAN W D, HU R B, et al.Analysis and Outlook of the Global Helium Supply and Demand Situation[J]. China Mining Magazine, 2025, 34(2): 493-502.
[7] ZHOU Q Z, YAN W D, HU R B, et al.Analysis and Outlook of the Global Helium Supply and Demand Situation[J]. China Mining Magazine, 2025, 34: 493-502.
[8] QIN S F, DOU L R, TAO G, et al.Helium Enrichment Theory and Exploration Ideas for Helium-Rich Gas Reservoirs[J]. Petroleum Exploration and Development, 2024, 51(5): 1340-1356.
[9] TAO S Z, YANG Y Q, CHEN Y, et al.Geological Conditions, Genetic Mechanisms and Accumulation Patterns of Helium Resources[J]. Petroleum Exploration and Development, 2024, 51(2): 498-518.
[10] MARTINS C M B, MOREIRA J L, MARTINS J I. Corrosion in Water Supply Pipe Stainless Steel 304 and a Supply Line of Helium in Stainless Steel 316[J]. Engineering Failure Analysis, 2014, 39: 65-71.
[11] SHEHATA M F, EL-SHAMY A M. Hydrogen-Based Failure in Oil and Gas Pipelines a Review[J]. Gas Science and Engineering, 2023, 115: 204994.
[12] 李厚补, 张学敏, 毛学强, 等. 油气集输用热塑性塑料气体渗透性研究现状[J]. 天然气与石油, 2016, 34(1): 84-88.
LI H B, ZHANG X M, MAO X Q, et al.Research on Gas Permeation of Thermoplastics Used in Oil and Gas Pipelines[J]. Natural Gas and Oil, 2016, 34(1): 84-88.
[13] 曹大勇, 钟洋, 曾德智, 等. 酸压工况对氢化丁腈橡胶O型圈的损伤评价[J]. 天然气与石油, 2020, 38(6): 92-96.
CAO D Y, ZHONG Y, ZENG D Z, et al.Damage Assessment on HNBR O-Type Ring under Acid Fracturing Condition[J]. Natural Gas and Oil, 2020, 38(6): 92-96.
[14] 廖彬, 曾祥兵, 潘晓霞, 等. 聚四氟乙烯密封圈密封性能研究[J]. 真空科学与技术学报, 2015, 35(1): 69-73.
LIAO B, ZENG X B, PAN X X, et al.Influence of Helium Permeation in Polytetrafluoroethene Gasket on Leak Detection[J]. Chinese Journal of Vacuum Science and Technology, 2015, 35(1): 69-73.
[15] 李亦健, 陈虹, 高旭, 等. 以聚四氟乙烯为密封件的法兰结构低温密封性能研究[J]. 低温工程, 2014(4): 31-34.
LI Y J, CHEN H, GAO X, et al.Experimental Study on Cryogenic Sealing Performance of Flange-Seal-Bolt Seal Structure with Polytetrafluoroethene[J]. Cryogenics, 2014(4): 31-34.
[16] 董栋, 朱爱青, 王旭迪. 三种聚合物薄膜氦渗透率的测试[J]. 真空, 2015, 52(6): 6-9.
DONG D, ZHU A Q, WANG X D.Gas Permeability of Polymer Membranes[J]. Vacuum, 2015, 52(6): 6-9.
[17] 彭建云, 魏军会, 杜文波, 等. 改性聚四氟乙烯在不同温度下对泛塞封密封性能影响[J]. 冶金与材料, 2021, 13(3): 5-7.
PENG J Y, WEI J H, DU W B, et al.Influence of Modify PTFE on Sealing Performance of Flood Plug Seal at Different Temperature[J]. Metallurgy and Materials, 2021, 13(3): 5-7.
[18] 丁栋, 成永军, 陈联, 等. 橡胶密封对氦质谱真空压力法检漏的影响分析及试验验证[J]. 真空与低温, 2020, 26(2): 114-119.
DING D, CHENG Y J, CHEN L, et al.Influence of Rubber Seal on Leakage Detection by Helium Mass Spectrometry Vacuum Pressure Method Was Analyzed and Tested[J]. Vacuum and Cryogenics, 2020, 26(2): 114-119.
[19] WANG Z F, WANG B, QI N, et al.Influence of Fillers on Free Volume and Gas Barrier Properties in Styrene-Butadiene Rubber Studied by Positrons[J]. Polymer, 2005, 46(3): 719-724.
[20] JING Y R, CUI Z W, ZOU H M, et al.Three-Dimensional Solubility Parameters of Natural Rubber and Its Predictive Power in Diffusion Coefficients[J]. Journal of Applied Polymer Science, 2022, 139(2): 51473.
[21] PUTS G J, CROUSE P, AMEDURI B M.Polytetrafluoroethylene: Synthesis and Characterization of the Original Extreme Polymer[J]. Chemical Reviews, 2019, 119(3): 1763-1805.
[22] XU J, HAO T Y, HOSSAIN Z M.Electronic Structure Basis of Strength and Toughness in Fluoropolymers[J]. Journal of Applied Physics, 2020, 128(15): 154305.
[23] SHIT S C, SHAH P.A Review on Silicone Rubber[J]. National Academy Science Letters, 2013, 36(4): 355-365.
[24] QIAN C, LI Y L, ZHAO J, et al.Thermal-Oxidative Aging and Tribological Properties of Carbon Nanotube/Nitrile Butadiene Rubber Composites with Varying Acrylonitrile Content: Molecular Dynamics Simulations[J]. Polymer Engineering & Science, 2023, 63(5): 1516-1527.
[25] DUTTA S, DAS N.Graphene-Coated Halloysite Nanoclay Membrane for the Enhanced Separation of Hydrogen from a Hydrogen-Helium Mixture[J]. ACS Applied Materials & Interfaces, 2022, 14(28): 32444-32456.
[26] YU L, KANEZASHI M, NAGASAWA H, et al.Fabrication and Microstructure Tuning of a Pyrimidine-Bridged Organoalkoxysilane Membrane for CO2 Separation[J]. Industrial & Engineering Chemistry Research, 2017, 56(5): 1316-1326.